358 research outputs found

    Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent

    Get PDF
    Optical contrast agents have been widely applied to enhance the sensitivity and specificity of optical imaging with near-infrared (NIR) light. However, because of the overwhelming scattering of light in biological tissues, the spatial resolution of traditional optical imaging degrades drastically as the imaging depth increases. Here, for the first time to our knowledge, we present noninvasive photoacoustic angiography of animal brains in vivo with NIR light and an optical contrast agent. When indocyanine green polyethylene glycol, a novel absorption dye with prolonged clearance, is injected into the circulatory system of a rat, it obviously enhances the absorption contrast between the blood vessels and the background tissues. Because NIR light can penetrate deep into the brain tissues through the skin and skull, we are able to successfully reconstruct the vascular distribution in the rat brain from the photoacoustic signals. On the basis of differential optical absorption with and without contrast enhancement, a photoacoustic angiograph of a rat brain is acquired that matches the anatomical photograph well and exhibits high spatial resolution and a much-reduced background. This new technology demonstrates the potential for dynamic and molecular biomedical imaging

    Laser-induced photoacoustic tomography enhanced with an optical contrast agent

    Get PDF
    Optical contrast agents, such as indocyanine dyes, nano-particles and their functional derivatives, have been widely applied to enhance the sensitivity and specificity of optical imaging. However, due to the overwhelming scattering of light in biological tissues, the spatial resolution of traditional optical imaging degrades drastically as the imaging depth increases. For the first time to our knowledge, non-invasive in vivo photoacoustic imaging of an optical contrast agent, distributed in the rat brain, was implemented with near-infrared light. Injection of indocyanine green polyethylene glycol, a contrast agent with a high absorption at the 805-nm wavelength, into the circulatory system of a rat enhanced the absorption contrast between the blood vessels and the background brain tissues. Because near-infrared light can penetrate deep into the brain tissues through the skin and skull, we were able to successfully reconstruct the vascular distribution in the rat brain from the detected photoacoustic signals. The dynamic concentration of this contrast agent in the brain blood after the intravenous injection was also studied. This work proved that the distribution of an exogenous contrast agent in biological tissues can be imaged clearly and accurately by photoacoustic tomography. This new technology has high potential for application in dynamic and molecular medical imaging

    Heme oxygenase-1 derived carbon monoxide permits maturation of myeloid cells

    Get PDF
    Critical functions of the immune system are maintained by the ability of myeloid progenitors to differentiate and mature into macrophages. We hypothesized that the cytoprotective gas molecule carbon monoxide (CO), generated endogenously by heme oxygenases (HO), promotes differentiation of progenitors into functional macrophages. Deletion of HO-1, specifically in the myeloid lineage (Lyz-Cre:Hmox1flfl), attenuated the ability of myeloid progenitors to differentiate toward macrophages and decreased the expression of macrophage markers, CD14 and macrophage colony-stimulating factor receptor (MCSFR). We showed that HO-1 and CO induced CD14 expression and efficiently increased expansion and differentiation of myeloid cells into macrophages. Further, CO sensitized myeloid cells to treatment with MCSF at low doses by increasing MCSFR expression, mediated partially through a PI3K-Akt-dependent mechanism. Exposure of mice to CO in a model of marginal bone marrow transplantation significantly improved donor myeloid cell engraftment efficiency, expansion and differentiation, which corresponded to increased serum levels of GM-CSF, IL-1α and MCP-1. Collectively, we conclude that HO-1 and CO in part are critical for myeloid cell differentiation. CO may prove to be a novel therapeutic agent to improve functional recovery of bone marrow cells in patients undergoing irradiation, chemotherapy and/or bone marrow transplantation

    Nitric oxide-dependent bone marrow progenitor mobilization by carbon monoxide enhances endothelial repair after vascular injury

    Get PDF
    Carbon monoxide (CO) has emerged as a vascular homeostatic molecule that prevents balloon angioplasty-induced stenosis via antiproliferative effects on vascular smooth muscle cells. The effects of CO on reendothelialization have not been evaluated

    Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation

    Get PDF
    Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1-deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1-deficient mice. IL-1β cleavage and secretion were impaired in HO-1-deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes.NIH grants: (HL-071797, HL-076167, HL-106227), American Heart Association grants: (10SDG2640091 and NIH R21CA169904-01), Julie Henry Fund, Transplant Center of the BIDMC, FCT grants: (SFRH/BPD/25436/2005, PTDC/BIO/70815/2006, PTDC/BIA-BCM/101311/2008, PTDC/SAU-FCF/100762/2008), the European Community, 6th Framework grant LSH-2005-1.2.5-1 and ERC-2011-AdG, Howard Hughes Medical Institute

    Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent

    Get PDF
    Optical contrast agents have been widely applied to enhance the sensitivity and specificity of optical imaging with near-infrared (NIR) light. However, because of the overwhelming scattering of light in biological tissues, the spatial resolution of traditional optical imaging degrades drastically as the imaging depth increases. Here, for the first time to our knowledge, we present noninvasive photoacoustic angiography of animal brains in vivo with NIR light and an optical contrast agent. When indocyanine green polyethylene glycol, a novel absorption dye with prolonged clearance, is injected into the circulatory system of a rat, it obviously enhances the absorption contrast between the blood vessels and the background tissues. Because NIR light can penetrate deep into the brain tissues through the skin and skull, we are able to successfully reconstruct the vascular distribution in the rat brain from the photoacoustic signals. On the basis of differential optical absorption with and without contrast enhancement, a photoacoustic angiograph of a rat brain is acquired that matches the anatomical photograph well and exhibits high spatial resolution and a much-reduced background. This new technology demonstrates the potential for dynamic and molecular biomedical imaging

    Cyclin A1 and P450 aromatase promote metastatic homing and growth of stem-like prostate cancer cells in the bone marrow

    Get PDF
    Bone metastasis is a leading cause of morbidity and mortality in prostate cancer (PCa). While cancer stem-like cells have been implicated as a cell of origin for PCa metastases, the pathways which enable metastatic development at distal sites remain largely unknown. In this study, we illuminate pathways relevant to bone metastasis in this disease. We observed that cyclin A1 (CCNA1) protein expression was relatively higher in PCa metastatic lesions in lymph node, lung, and bone/bone marrow. In both primary and metastatic tissues, cyclin A1 expression was also correlated with aromatase (CYP19A1), a key enzyme that directly regulates the local balance of androgens to estrogens. Cyclin A1 overexpression in the stem-like ALDHhigh subpopulation of PC3M cells, one model of PCa, enabled bone marrow integration and metastatic growth. Further, cells obtained from bone marrow metastatic lesions displayed self-renewal capability in colony forming assays. In the bone marrow, Cyclin A1 and aromatase enhanced local bone marrow-releasing factors, including androgen receptor, estrogen and matrix metalloproteinase MMP9 and promoted hte metastatic growth of PCa cells. Moreover, ALDHhigh tumor cells expressing elevated levels of aromatase stimulated tumor/host estrogen production and acquired a growth advantage in the presence of host bone marrow cells. Overall, these findings suggest that local production of steroids and MMPs in the bone marrow may provide a suitable microenvironment for ALDHhigh PCa cells to establish metastatic growths, offering new approaches to therapeutically target bone metastases

    Laser-induced photoacoustic tomography enhanced with an optical contrast agent

    Get PDF
    Optical contrast agents, such as indocyanine dyes, nano-particles and their functional derivatives, have been widely applied to enhance the sensitivity and specificity of optical imaging. However, due to the overwhelming scattering of light in biological tissues, the spatial resolution of traditional optical imaging degrades drastically as the imaging depth increases. For the first time to our knowledge, non-invasive in vivo photoacoustic imaging of an optical contrast agent, distributed in the rat brain, was implemented with near-infrared light. Injection of indocyanine green polyethylene glycol, a contrast agent with a high absorption at the 805-nm wavelength, into the circulatory system of a rat enhanced the absorption contrast between the blood vessels and the background brain tissues. Because near-infrared light can penetrate deep into the brain tissues through the skin and skull, we were able to successfully reconstruct the vascular distribution in the rat brain from the detected photoacoustic signals. The dynamic concentration of this contrast agent in the brain blood after the intravenous injection was also studied. This work proved that the distribution of an exogenous contrast agent in biological tissues can be imaged clearly and accurately by photoacoustic tomography. This new technology has high potential for application in dynamic and molecular medical imaging

    Abnormal Intracellular Accumulation and Extracellular Aβ Deposition in Idiopathic and Dup15q11.2-q13 Autism Spectrum Disorders

    Get PDF
    <div><h3>Background</h3><p>It has been shown that amyloid ß (Aβ), a product of proteolytic cleavage of the amyloid β precursor protein (APP), accumulates in neuronal cytoplasm in non-affected individuals in a cell type–specific amount.</p> <h3>Methodology/Principal Findings</h3><p>In the present study, we found that the percentage of amyloid-positive neurons increases in subjects diagnosed with idiopathic autism and subjects diagnosed with duplication 15q11.2-q13 (dup15) and autism spectrum disorder (ASD). In spite of interindividual differences within each examined group, levels of intraneuronal Aβ load were significantly greater in the dup(15) autism group than in either the control or the idiopathic autism group in 11 of 12 examined regions (p<0.0001 for all comparisons; Kruskall-Wallis test). In eight regions, intraneuronal Aβ load differed significantly between idiopathic autism and control groups (p<0.0001). The intraneuronal Aβ was mainly N-terminally truncated. Increased intraneuronal accumulation of Aβ<sub>17–40/42</sub> in children and adults suggests a life-long enhancement of APP processing with α-secretase in autistic subjects. Aβ accumulation in neuronal endosomes, autophagic vacuoles, Lamp1-positive lysosomes and lipofuscin, as revealed by confocal microscopy, indicates that products of enhanced α-secretase processing accumulate in organelles involved in proteolysis and storage of metabolic remnants. Diffuse plaques containing Aβ<sub>1–40/42</sub> detected in three subjects with ASD, 39 to 52 years of age, suggest that there is an age-associated risk of alterations of APP processing with an intraneuronal accumulation of a short form of Aβ and an extracellular deposition of full-length Aβ in nonfibrillar plaques.</p> <h3>Conclusions/Significance</h3><p>The higher prevalence of excessive Aβ accumulation in neurons in individuals with early onset of intractable seizures, and with a high risk of sudden unexpected death in epilepsy in autistic subjects with dup(15) compared to subjects with idiopathic ASD, supports the concept of mechanistic and functional links between autism, epilepsy and alterations of APP processing leading to neuronal and astrocytic Aβ accumulation and diffuse plaque formation.</p> </div

    Intraneuronal Aβ immunoreactivity is not a predictor of brain amyloidosis-β or neurofibrillary degeneration

    Get PDF
    Amyloid β (Aβ) immunoreactivity in neurons was examined in brains of 32 control subjects, 31 people with Down syndrome, and 36 patients with sporadic Alzheimer’s disease to determine if intraneuronal Aβ immunoreactivity is an early manifestation of Alzheimer-type pathology leading to fibrillar plaque formation and/or neurofibrillary degeneration. The appearance of Aβ immunoreactivity in neurons in infants and stable neuron-type specific Aβ immunoreactivity in a majority of brain structures during late childhood, adulthood, and normal aging does not support this hypothesis. The absence or detection of only traces of reaction with antibodies against 4–13 aa and 8–17 aa of Aβ in neurons indicated that intraneuronal Aβ was mainly a product of α- and γ-secretases (Aβ(17–40/42)). The presence of N-terminally truncated Aβ(17–40) and Aβ(17–42) in the control brains was confirmed by Western blotting and the identity of Aβ(17–40) was confirmed by mass spectrometry. The prevalence of products of α- and γ -secretases in neurons and β- and γ-secretases in plaques argues against major contribution of Aβ-immunopositive material detected in neuronal soma to amyloid deposit in plaques. The strongest intraneuronal Aβ(17–42) immunoreactivity was observed in structures with low susceptibility to fibrillar Aβ deposition, neurofibrillary degeneration, and neuronal loss compared to areas more vulnerable to Alzheimer-type pathology. These observations indicate that the intraneuronal Aβ immunoreactivity detected in this study is not a predictor of brain amyloidosis or neurofibrillary degeneration. The constant level of Aβ immunoreactivity in structures free from neuronal pathology during essentially the entire life span suggests that intraneuronal amino-terminally truncated Aβ represents a product of normal neuronal metabolism
    • …
    corecore